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“All truths are easy to understand once they are discovered; the point is to 
discover them.” – Galileo Galilei



Algorithms Used in Experimental 
Mathematics

Symbolic computation for algebraic and calculus 
manipulations.
Integer-relation methods, especially the “PSLQ” algorithm.
High-precision integer and floating-point arithmetic.
High-precision evaluation of integrals and infinite series 
summations.
The Wilf-Zeilberger algorithm for proving summation 
identities.
Iterative approximations to continuous functions.
Identification of functions based on graph characteristics.
Graphics and visualization methods targeted to 
mathematical objects.



The Wilf-Zeilberger Algorithm
for Proving Identities

A slick, computer-assisted proof scheme to prove certain 
types of identities.
Provides a nice complement to PSLQ:

PSLQ and the like permit one to discover new identities, but 
do not constitute rigorous proof, and do not suggest how a 
rigorous proof may be formulated.
W-Z methods permit one to prove certain types of identities, 
but do not provide any means to discover the identity.



Example Usage of W-Z

Recall these experimentally-discovered identities (from last lecture):

Guillera started by defining

He then used the EKHAD software package to obtain the companion



Example Usage of W-Z, Cont.

When we define

Zeilberger's theorem  gives the identity

which when written out is

A limit argument completes the proof of Guillera’s identities.



Computation of the Pi Function 
[Pi(x) =  number of primes less than x]



Computation of the Pi Function

The most efficient currently known algorithms for computing 
the Pi function are based on numerically integrating the 
Riemann zeta function with complex arguments, to 
sufficiently high precision that one can round to obtain the 
correct result.
Current state-of-the-art methods are given in Richard 
Crandall and Carl Pomerance, Prime Numbers: A 
Computational Perspective.
This and numerous other examples in experimental 
mathematics emphasize the importance of high-precision 
numerical integration (i.e., quadrature).



Newton Iteration Methods

Newton iterations arise frequently in experimental math, such as to 
iteratively solve an equation p(x) = 0:

Numerous applications include:

• Performing division and square roots using high-precision arithmetic.

• Computing exp to high precision, given a fast scheme for log.

• Finding polynomial roots and roots of more general functions. 

Potential pitfalls:

• Numerous evaluations may need to be computed to locate the root.

• Derivative of function may be zero at a zero of the function. 

See companion book for ways to deal with such problems.



History of Numerical Quadrature

1670: Newton devises Newton-Coates integration.
1740: Thomas Simpson develops Simpson's rule.
1820: Gauss develops Gaussian quadrature.
1950-1980: Adaptive quadrature, Romberg integration, 
Clenshaw-Curtis integration, others.
1985-1990: Maple and Mathematica feature built-in numerical 
quadrature facilities.
2000: Very high-precision quadrature (1000+ digits).

With these high-precision values, we can now use PSLQ to obtain 
analytical evaluations of integrals.



The Euler-Maclaurin Formula

[Here h = (b - a)/n and xj = a + j h.  Dm f(x) means m-th derivative of f(x).]

Note when f(t) and all of its derivatives are zero at a and b, the error E(h) of 
a simple block-function approximation to the integral goes to zero more 
rapidly than any power of h.



Block-Function Approximation to the 
Integral of a Bell-Shaped Function



Quadrature and the 
Euler-Maclaurin Formula

Given f(x) defined on (-1,1), employ a function g(t) such that g(t) goes 
from -1 to 1 over the real line, with g’(t) going to zero for large |t|.  Then 
substituting x = g(t) yields

[Here xj = g(hj) and wj = g’(hj).]

If g’(t) goes to zero rapidly enough for large t, then even if f(x) has an 
infinite derivative or blow-up singularity at an endpoint, the product  
f(g(t)) g’(t)  often is a nice bell-shaped function for which the E-M 
formula applies.



Four Suitable ‘g’ Functions

The third and fourth are known as “tanh-sinh” quadrature.



Original and Transformed 
Integrand Function

Original function (on [-1,1]):

Transformed function using 
g(t) = erf t:



Test Integrals



Quadratic Convergence with 
Tanh-Sinh Quadrature

At level k, h = 2-k.  I.e., each level halves h and doubles N, the # of abscissas.



Error Estimation in Tanh-Sinh
Quadrature

Let F(t) be the desired integrand function on [a,b].  Define f(t) = F(g(t)) g'(t), 
where g(t) = tanh (sinh t)  (or one of the other g functions above).  Then 
an estimate of the error of the quadrature result, with interval h, is:

First order (m = 1) estimates are remarkably accurate.  Higher-order 
estimates (m > 1) can be used to obtain “certificates” on the accuracy of a 
tanh-sinh quadrature result.

This formula was originally discovered due to a “bug” in our computer 
program – by mistake we implemented this formula and found it to be 
extremely accurate.



Error Estimation Results

Results for using tanh-sinh quadrature to integrate the function

For full details, see paper by DHB and Jonathan Borwein, “Effective Error 
Estimates in Euler-Maclaurin Based Quadrature Schemes,” available at 
http://crd.lbl.gov/~dhbailey/dhbpapers/em-error.pdf



Experimental Result Using PSLQ and 
Tanh-Sinh Quadrature - Example 1

Let

Then PSLQ yields

Several general results have now been proven, including



Example 2

where

is the Dirichlet series.



Example 3

This arises in mathematical physics, 
from analysis of the volumes of ideal 
tetrahedra in hyperbolic space.   

This “identity” has now been verified 
numerically to 20,000 digits, but no 
proof is known.

Note that the integrand function has a 
nasty singularity.



Example 4

Define

Then 

This has been verified to over 1000 digits.  The interval 
in J23 includes the singularity.



Example 5 (Jan 2006)

The following integrals arise from Ising theory in mathematical physics:

where K0 is a modified Bessel function.  We then computed 500-digit 
numerical values, from which we found these results (now proven):

We first showed that this can be transformed to a 1-D integral:



Cautionary Example

These constants agree to 42 decimal digit accuracy, but are
NOT equal:

Computing this integral is nontrivial, due to difficulty in 
evaluating the integrand function to high precision. 



Infinite Series Summation

How can we obtain high-precision of slowly converging infinite series, e.g.:

One fairly general method is to apply a technique we have already seen: 
the Euler-Maclaurin formula (in a slightly different form):

The usual strategy is to manually compute the first 105 or 106 terms, then 
use this formula to obtain an accurate estimate of the “tail.”

Typically each additional term of the summation adds several more digits 
of accuracy to the result. All calculations must be done using the target 
precision.



Example:  Computing Catalan

Let f(x) = (2x+1) / [(4x+1)2 (4x+3)2].  Then we can write

Some details for practical usage, such as how to compute Bernoulli 
numbers, are given in the companion book and Experimentation in 
Mathematics.



Apery-Like Summations

The following formulas for zeta(n) have been known for many years:

These results have led some to speculate that

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q5 satisfies a polynomial 
with degree at most 25, then at least one coefficient has 380 digits.



Apery-Like Relations Found 
Using Integer Relation Methods

Formulas for 7 and 11 were found by Jonathan Borwein and David Bradley; 
5 and 9 are due to Koecher.  This general formula was found by Koecher:



Newer Results

Using bootstrapping and an application of the “Pade” function, Borwein 
and Bradley produced the following remarkable result:

Following an analogous – but more deliberate – experimental-based 
procedure, DHB, Borwein and Bradley obtained a similar general formula 
for zeta(2n+2) that is pleasingly parallel to above:

Note that this gives an Apery-like formula for zeta(2n), since the LHS equals

This experimental discovery will be sketched in the new few slides.



The Experimental Scheme

We first conjectured that zeta(2n+2) is a rational combination of terms of 
the form:

where r + a1 + a2 + ... + aN = n + 1 and ai are listed in nonincreasing 
order.  We can then write:

where P(m) denotes the additive partitions of m.  We can then deduce that

where Pk(x) are polynomials whose general form we hope to discover.



The Bootstrap Process



Coefficients Obtained



Resulting Polynomials



After Using “Pade” Function in 
Mathematica

which immediately suggests the general form:



Confirmations of Zeta(2n+2) 
Formula 

We  symbolically computed the power series coefficients of the LHS 
and the RHS , and have verified that they agree up to the term with 
x100.
We verified that Z(1/6), Z(1/2),  Z(1/3), Z(1/4), where Z(x) is the RHS, 
give numerically correct values (analytic values are known for LHS, 
using the cot formula).
We then affirmed that the formula gives numerical values with 
LHS=RHS (to available 400-digit) for 100 pseudorandomly chosen 
arguments x.
We subsequently proved this formula two different ways, including 
using the Wilf-Zeilberger method.

Full details are available in paper by DHB, Jonathan Borwein and David 
Bradley, “Experimental Determination of Apery-Like Identities for 
Zeta(2n+2),“ available at 
http://crd.lbl.gov/~dhbailey/dhbpapers/apery.pdf



Summary

New techniques now permit integrals, 
infinite series sums and other entities 
to be evaluated to high precision 
(hundreds or thousands of digits), 
thus permitting PSLQ-based 
schemes to discover new identities.

These methods typically do not suggest 
proofs, but often it is much easier to 
find a proof when one “knows” the 
answer is right.

Full details are available in companion book for this course, or in one of 
the two books recently published by Jonathan M. Borwein, DHB and (for 
vol 2) Roland Girgensohn.  A “Reader’s Digest” condensed version of 
these two books is available FREE at 

http://www.experimentalmath.info
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